Модели распространения атмосферных примесей для расчета рисков химических аварий

А.П. Кузнецов

Введение

Развитие экономики сопровождается ухудшением аварийной обстановки в результате функционирования объектов техносферы. Одним из видов аварий на объектах техносферы являются аварии с выбросом химически опасных веществ, сопровождающиеся повышением уровня и масштабов загрязнения окружающей среды. С нарушением естественного химического баланса в составе атмосферы связывают такие явления, как потепление климата, изменение озонного слоя, кислотные дожди, угнетение и гибель лесов, смоговые явления в загрязненных промышленных районах [1]. Появление значительных количеств токсикантов в атмосфере неизбежно сказывается на экосистеме в целом [2]. Адекватное описание химических процессов, протекающих в таком сложном реакторе, каким является атмосфера, возможно лишь с привлечением математических моделей, способных в сочетании с системами мониторинга, отобразить все многообразие явлений и их взаимодействие и позволяющих оценить последствия химических возмущений естественного состава атмосферы разными источниками [3].

Совокупности частиц, играющих существенную роль в превращениях химических элементов, для удобства объединены в семейства О-, Н-, N-, S-, C-, C1-, Вг-, І-содержащих соединений [4]. Экспериментальные данные по химической кинетике и фотохимии газофазных реакций в последнее время обобщаются группой экспертов в рамках подкомитета ИЮПАК по газофазной кинетике, который периодически издает сборники кинетических и фотохимических данных, касающихся химии атмосферы [5].

Распространение поллютантов в окружающей среде при химических авариях чаще всего происходит в результате их поступления в атмосферу и последующего их переноса. При этом возможны химические реакции поллютанта с компонентами атмосферы и образование вторичных поллютантов. Наряду с этим при переносе поллютантов в атмосфере происходит ряд сопутствующих явлений: гравитационное оседание частиц, сухое и влажное осаждение, отражение от поверхности земли.

Перенос поллютантов в атмосфере определяется, прежде всего, свойствами преобладающей воздушной фазы. Она отличается нестабильностью, пространственновременной неустойчивостью различных её показателей. Вариации последних носят случайный характер (Рис. 1).

Рис. 1 Поведение поллютантов в атмосфере

Таким образом, целью работы является разработка моделей переноса поллютантов при аварийных выбросах химически опасных веществ с учётом их трансформации в окружающей среде.

Модель переноса в атмосфере

Атмосферные модели переноса обычно формулируются на основе фундаментальных законов сохранения массы с учётом закономерностей, описывающих трансформацию поллютантов и эмпирических зависимостей, отражающих изменение параметров моделей. При построении моделей переноса широко используются вероятностно-статистические представления о рассеянии вещества в пространстве.

В роли выходных переменных обычно выступают пространственно-временное распределение концентраций поллютанта в пространстве и интенсивность массового потока на подстилающую поверхность.

В зависимости от сложности и назначения различают следующие модели атмосферного переноса:

- по назначению модели: ретроспективный анализ, текущий анализ или прогноз;
- по уровню сложности, определяющему возможности применения модели: экспрессный или углублённый анализ.
- по теоретическому фундаменту: диффузионные, дисперсионные и аэродинамические модели.

В настоящее время для экспресс-прогноза масштабов аварийных выбросов широкое распространение получили дисперсионные гауссовы модели распространения атмосферных примесей. Так в качестве штатной методики для служб ГО и ЧС рекомендована методика [6]. Для составления деклараций безопасности опасных объектов, использующих аварийно опасные химические вещества, применяется методика [7].

Гауссова модель переноса от мгновенного точечного источника проста и понятна. Она имеет солидное теоретическое обоснование, с точностью до обозначений совпадает с аналитическим решением дифференциального уравнения в частных производных, описывающего турбулентную диффузию в атмосфере в условиях однородной и стационарной турбулентности [8].

Нами была выбрана методика прогноза масштабов и последствий загрязнения атмосферы от спонтанных выбросов токсикантов, восполняющая пробелы, имеющиеся в ранее упомянутых методиках [9]. Указанная модель работоспособна при следующих параметрах:

- 1. Поллютанты могут представлять собой газы или паро-жидкостные смеси с плотностью, не превышающей плотность воздуха.
- 2. Предполагается, что метеоусловия не изменяются в течение периода времени, пока облако поллютанта не рассеется.
- Гауссова модель плохо учитывает формирование концентрационного поля поллютанта вблизи источника на расстояниях менее 100 м. Прогноз является удовлетворительным, если расстояние не превышает 10 км.
- 4. Эмпирические зависимости для дисперсий ограниченно применимы для сильно пересечённой местности.

Концентрационное поле поллютанта, порождаемого мгновенным точечным источником в атмосфере, может быть описано выражением:

$$c(\underline{x},t) = \frac{M}{(2\pi)^{3/2} \sigma_{(1)}(u_{1}t) \sigma_{(2)}(u_{1}t) \sigma_{(3)}(u_{1}t)} \exp\left[-\frac{(x_{1}-u_{1}t)^{2}}{2\sigma_{(1)}^{2}(u_{1}t)} - \frac{x_{2}^{2}}{2\sigma_{(2)}^{2}(u_{1}t)}\right] \times \left\{ \exp\left[-\frac{(x_{3}-x_{30})^{2}}{2\sigma_{(3)}^{2}(u_{1}t)}\right] + \exp\left[-\frac{(x_{3}+x_{30})^{2}}{2\sigma_{(3)}^{2}(u_{1}t)}\right] \right\} f_{p}(t) \cdot f_{oc}(t)$$

$$(1.1)$$

Эта зависимость отражает распределение поллютанта в пространстве и изменение во времени при следующих условиях:

- масса поллютанта М выброшена из источника, находящегося в точке (0,0, x₃₀), мгновенно в момент времени t=t₀=0;

- ветер со скоростью u₁ направлен вдоль оси x₁;

- дисперсии $\sigma_{(i)}^2$ являются функциями аргумента u₁t;

- $f_p(t), f_{oc}(t)$ - функции истощения облака, обусловленные соответственно химическим превращением поллютанта и оседанием, выражаются формулами:

$$\begin{cases} f_p(t) = e^{-kt}, \\ f_{oc}(t) = \exp\left\{-\sqrt{\frac{2}{\pi}} \frac{v_d}{u_1} \int_0^{u_1t} \frac{d\beta}{\sigma_3(\beta) * \exp\left[x_{30}^2 / 2\sigma_3^2(\beta)\right]}\right\} \end{cases}$$
(1.2)

где k - константа скорости деградации поллютанта;

 V_{d} - скорость оседания.

Дисперсии $\sigma_{(i)}^2$ в формуле (1.2), исходя из того, что объем облака поллютанта в начальный момент времени t=0 не равен нулю, можно записать в виде следующих выражений

$$\begin{cases} \sigma_{(1)}^{2}(u_{1}t) = \sigma_{1}^{2}(u_{1}t) + \sigma_{0}^{2}, \\ \sigma_{(2)}^{2}(u_{1}t) = \sigma_{2}^{2}(u_{1}t) + \sigma_{0}^{2}, \\ \sigma_{(3)}^{2}(u_{1}t) = \sigma_{3}^{2}(u_{1}t) + \sigma_{0}^{2}, \end{cases}$$
(1.3)

где поправка σ_0 выражается формулой

$$\sigma_0 = \left[M / \left(2^{1/2} \cdot \pi^{3/2} \rho \right) \right]^{1/3}$$
(1.4)

где *р* - плотность паров поллютанта.

Важно отметить, что данная поправка введена как в дисперсии, входящие в сомно-

житель $\frac{M}{(2\pi)^{3/2}\sigma_{(1)}(u_1t)\sigma_{(2)}(u_1t)\sigma_{(3)}(u_1t)}$ так и в дисперсиях, содержащихся в показателях

экспонент. В силу этого не нарушается условие материального баланса

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{\infty} c\left(\underline{x},t\right) dx_1 dx_2 dx_3 = 1.$$
(1.5)

В качестве дисперсионных зависимостей $\sigma_i^2(u_1t)$ используем формулы Смита-Хоскера [7, 8], которые отражают влияние на дисперсию расстояния центра клуба от источника, класса устойчивости атмосферы и параметра шероховатости подстилающей поверхности.

$$\sigma_1 = \sigma_2 = \frac{c_3 \cdot u_1 t}{\sqrt{1 + 0,0001(u_1 t)}}$$
(1.6)

где коэффициент с3 зависит от категорий (классов) устойчивости атмосферы.

Таблица 1. Зависимость коэффициента с₃ от категорий (классов) устойчивости атмосферы

Категория (класс) ус-	Α	B	С	D	Е	F
тоичивости атмосфе- ры	=1	=2	=3	=4	=5	=6
Значение с3	0,22	0,16	0,11	0,08	0,06	0,04

Класс А соответствует сильно неустойчивой атмосфере с преобладанием конвективных процессов. Класс В – умеренно неустойчивой атмосфере, С – слабо неустойчивой атмосфере. Класс D отвечает нейтральной стратификации атмосферы. Класс E означает, что атмосфера слабо устойчива, наблюдается инверсия. Наконец, класс F соответствует умеренно устойчивой атмосфере.

Таблица 2. Классы устойчивости атмосферы по Паскуиллу

Скорость	День)			Ночь		
[м/с]	Солнечная радиация			Облачность	Ясно	
	Сильная	Умеренная	Слабая	Обл > 4/8	Обл < 3/8	
<2	A = 1	A- B=2	B =2			
2-3	A-B	В	C =3	E = 5	F =6	
3-5	В	B-C	С	D = 4	Е	
5-6	С	C-D	D	D	D	
>6	С	D	D	D	D	

Выражение для вычисления величины σ₃:

$$\sigma_{3} = \begin{cases} F\left(u_{1}t, Z_{0}\right) \cdot g\left(u_{1}t\right) & F\left(u_{1}t, Z_{0}\right) \cdot g\left(u_{1}t\right) \leq \sigma_{3}^{\max} \\ \sigma_{3}^{\max} & F\left(u_{1}t, Z_{0}\right) \cdot g\left(u_{1}t\right) \geq \sigma_{3}^{\max} \end{cases}$$
(1.7)

где σ_3^{\max} есть максимально возможное значение среднеквадратического отклонения σ_3 , которое задается таблицей 3.

Таблица 3. Максимально возможное значение величины σ₃.

Категория (класс) устойчи- вости атмосферы	Α	B	С	D	Ε	F
Значение о ₃	1600	920	640	400	220	100

 $F(Z_0, u_1 t_0)$ - корректирующий фактор, учитывающий влияние шероховатости подстилающей поверхности; $g(u_1 t)$ - функция, отражающая влияние аргумента $u_1 t$ при разных категориях устойчивости атмосферы.

Функция $F(u_1t, Z_0)$ представляется в виде

$$F(u_{1}t, Z_{0}) = \begin{cases} \ln \left\{ c_{1}(u_{1}t)^{d_{1}} \left[1 + \left[c_{2}^{*}(u_{1}t)^{d_{2}^{*}} \right]^{-1} \right]^{1} \right\} \\ \ln \left\{ c_{1}(u_{1}t)^{d_{1}} \left[1 + c_{2}^{*}(u_{1}t)^{d_{2}^{*}} \right]^{-1} \right\} \end{cases} \quad \Pi p_{H} \begin{array}{c} Z_{0} > 0, 1_{M}. \\ Z_{0} < 0, 1_{M}. \end{array}$$
(1.8)

Численные значения коэффициентов c_1, d_1, c_2^* и d_2^* представлены в таблице 4. Таблица 4. Коэффициенты функции $F(u_1t, Z_0)$

Параметр шероховатости	<i>C</i> ₁	d_1	c_2^*	d_2^*
Z_0,\mathbf{M}				
0,01	1,56	0,048	6,75·10 ⁻⁴	0,45
0,04	2,02	0,0269	$7,76 \cdot 10^{-4}$	0,37
0,1	2,72	0	0	0
0,4	5,16	- 0,098	18,6	-0,225
1	7,37	- 0,096	$4,29 \cdot 10^{3}$	- 0,60
4	11,7	- 0,128	$4,59 \cdot 10^4$	- 0,78

Функция $g(u_1 t)$ для вычисления σ_3 имеет вид:

$$g(u_{1}t) = \frac{a_{1}(u_{1}t)^{b_{1}}}{1 + a_{2}(u_{1}t)^{b_{2}}}$$
(1.9)

Коэффициенты a_1 , a_2 , b_1 b_2 зависят от категорий (классов) устойчивости атмосферы. Их численные значения представлены в таблице 5.

Таблица 5. Значения коэффициентов а₁, а₂ b₁, b₂.

Категория (класс) устойчи-	Значения коэфф			ффици-
вости	ентов			
атмосферы	<i>a</i> ₁	<i>a</i> ₂	b_1	b_2
A	0,112	5,38.10-4	1,06	0,815
В	0,130	$6,52 \cdot 10^{-4}$	0,95	0,750
С	0,112	9,05.10-4	0,92	0,718
D	0,098	$1,35 \cdot 10^{-3}$	0,889	0,688
E	0,0609	1,96.10-3	0,895	0,684
F	0,0638	$1,36 \cdot 10^{-3}$	0,783	0,672

Химические реакции в клубе облака поллютанта

В атмосферу выбрасывается большое количество химических веществ, находящихся в газовом и аэрозольном состояниях. Здесь они претерпевают ряд физико-химических изменений за счет механизмов фотохимической трансформации, нуклеации, конденсации/испарения и коагуляции. Все эти механизмы взаимосвязаны между собой, и каждый из них является частью общей комплексной экологической задачи. Из всех физикохимических процессов в атмосфере нами, в настоящей момент учитываются только химические реакции трансформации поллютанта в атмосфере. В применяемой модели элементы гидрометеорологического режима атмосферной циркуляции предполагаются известными, и исследуется протекание химических реакций на фоне атмосферных движений. При этом выделяют три случая в зависимости от соотношения между характерными химическими и динамическими (t_x , t_a) масштабами времени. Если (t_x , $< t_a$) (например, для короткоживущих атомов и свободных радикалов), то химические реакции можно рассматривать независимо от атмосферной динамики. В случае же (t_x > t_д) роль динамики велика (что имеет место, например, при рассмотрении таких примесей, как хлорфторметан, карбонилсульфид, гемиоксид азота и др.). Случай ($(t_x = t_g)$) наиболее сложен. При этом, чтобы описать поведение (изменение концентрации) данной примеси и оценить время ее пребывания в атмосфере, как правило, требуется совместный анализ гидрометеорологических, физических и химических процессов. Анализ пространственно-временных масштабов определяет постановку задач химии атмосферы.

Таким образом, можно выделить два крайних случая химической трансформации примеси.

- Скорость химических реакций больше скорости переноса вещества (t_x, < t_д). В этом случае происходит быстрая трансформация поллютанта под действием компонентов атмосферы и рассеянию подвергается смесь продуктов реакций, для каждого из которых справедлива гауссова модель. При этом предполагается, что физические свойства исходного вещества и продуктов его превращения (в частности плотность) существенно не изменяются.
- Скорость химических реакций меньше скорости переноса вещества (t_x, > t_д). В этом случае можно считать, что химическая трансформация примеси начинается после того, как установилось пространственное распределение концентраций поллютанта. Основой для расчёта концентраций будет служить начальная концентрация поллютанта в исследуемой точке.

В качестве характеристического времени t_x удобно взять период полупревращения вещества, который в случае реакций первого порядка (и в частности фотохимических) не

зависит от концентрации вещества. Для оценки t_д, таким образом, следует принять время, за которое концентрация вещества упадёт вдвое за счёт процессов переноса.

Модели химии атмосферы в областях с повышенной антропогенной нагрузкой, характерной для индустриально развитых районов, позволяют описывать динамику возникновения и развитие смоговых ситуаций. Помимо оксида углерода, оксидов азота, диоксида серы и углеводородов, присутствующих в повышенных концентрациях в выбросах автотранспорта, факелах ТЭЦ и других объектах, были зарегистрированы также вещества, которые не присущи первичным промышленным выбросам, например пероксинитраты, органические серо- и азотсодержащие соединения, органические кислоты и пероксиды. Кроме того, были обнаружены аномалии суточного хода концентраций озона [10]. В связи с многообразием химических реакций предлагается из основных циклов превращений наиболее важных поллютантов выбрать наиболее быстропротекающие реакции, отвечающие за трансформацию основной массы атмосферной примеси.

Основные циклы химических реакций в приземном слое атмосферы приведены ниже (рис 2-4).

Рис. 2. Кислородно-озоновый цикл

Рис. 3. Цикл соединений азота

Рис. 4 Цикл соединений серы

Модель химической трансформации примеси в атмосфере

Модель химической трансформации примеси в атмосфере основана на решении системы кинетических уравнений, записанных для реакций разложения исходной примеси и взаимодействия продуктов разложения и исходного вещества с компонентами атмосферы. Построение кинетических уравнений основано на построении стехиометрических матриц для реагентов и продуктов и столбца V, определяющего полный набор участвующих в реакциях веществ. В результате набор химических реакций запишется следующим образом:

$$S^{r}V \to^{k} S^{p}V, \qquad (1.10)$$

где k – столбец коэффициентов скоростей реакция, S^r, S^p стехиометрические матрицы реагентов и продуктов соответственно размерности $n \times m$, где n – число веществ, m – число реакций/

Эта запись позволит представить систему кинетических уравнений в виде

$$\frac{dC_i}{dt} = \sum_{i=1}^n \left(m_{ij}^p - m_{ij}^r \right) k_i \prod_{l=1}^m C_l^{m_{il}^r}$$
(1.11)

Здесь С_i – концентрация i-го вещества из столбца V; s_{ij} – матричные элементы соответствующих стехиометрических матриц. В задачах химии атмосферы встречаются реакции трёх типов: фотолизные, имеющие первый кинетический порядок и термические, первого, второго и реже третьего порядка.

Для нахождения законов сохранения строится молекулярная матрица М, число строк которой равно числу веществ, а число столбцов – числу элементов. Элемент m_{ij} –

показывает с каким весом входит ј-й элемент в i-е соединение. Закон сохранения числа атомов примет вид:

$$MV = C_t \tag{1.12}$$

Число законов сохранения равно числу химических элементов. Законы сохранения позволяют уменьшить число уравнений на число химических элементов. Благодаря произволу в выборе исключаемых уравнений можно избавиться от медленно меняющихся переменных, таких как основные компоненты атмосферы N₂ или O₂.

Построение математических уравнений в рамках химической кинетики разделяется на последовательность действий, в число которых входят:

- Вывод символьных кинетических уравнений и их корректировка для открытых систем;
- Задание атмосферных условий, при которых проводится анализ (высота, температура, давление, солнечная постоянная, статистическая модель атмосферы, альбедо отражающей поверхности);
- Для открытой химической системы задание источников и стоков для веществ;
- 4. Исключение веществ и с помощью законов сохранения;
- 5. Вычисление коэффициентов скорости реакций;
- 6. Построение редуцированной системы кинетических уравнений.

Расчет констант скоростей химических реакций

Для большинства термических реакций второго и третьего порядка формат представления кинетических данных имеет вид трехпараметрического уравнения Аррениуса

$$k(T) = A \exp\left(-\frac{E}{R}\frac{1}{T}\right) \left(\frac{T}{300}\right)^{-n}.$$
(2.1)

При таком описании для определения коэффициента скорости необходимо хранить несколько числовых констант, а именно: A, –E/R и n.

Для реакций диссоциации и рекомбинации для умеренно сложных молекул в области не очень высоких температур применимо приближенное выражение:

$$k = \frac{k_0 k_\infty}{k_0 + k_\infty} F, \qquad (2.2)$$

где первые члены представляют собой выражение Линдемана — Хиншельвуда, а дополнительный расширяющий множитель F при не очень высоких температурах задается:

$$\lg F = \frac{\lg F_c}{1 + \left[\lg \frac{k_0}{k_{\infty}} \right]^2},$$
(2.3)

 k_0, k_{∞} - предельные значения константы скорости при низком и высоком давлении соответственно. Каждое из этих значений константы скорости зависит от температуры по закону Аррениуса (2.1).

Константа скорости фотохимической реакции определяется следующим образом:

$$k(\lambda,T) = \int_{\lambda_1}^{\lambda_2} \sigma(\lambda,T) \Phi(\lambda,T) I(\lambda) d\lambda, \qquad (2.4)$$

где $\sigma(\lambda, T)$ - сечение поглощения, $\Phi(\lambda, T)$ - квантовый выход реакции, $I(\lambda)$ - интенсивность излучения. Первые две величины табулированы в справочных таблицах IUPAC. Последняя величина вычисляется исходя из выбранной модели атмосферы.

В численных расчетах уравнение **Ошибка! Источник ссылки не найден.** записывается в приближенном виде:

$$k(\lambda,T) \approx \sum_{i} \sigma_{i}(\lambda,T) \Phi_{i}(\lambda,T) I_{i}(\lambda) \Delta \lambda_{i}$$
(2.5)

Пример модели – химическая трансформация азотной кислоты

Рассматриваются два основных пути трансформации исходного вещества - термический и фотохимический. В термическом пути распада принимает участие активный радикал OH, постоянно присутствующий в атмосфере.

$$HNO_3 = (hv) HO + NO_2 (R1)$$
$$HNO_3 + OH = H_2O + NO_2 (R2)$$

Общий продукт реакций NO₂ подвергается дальнейшему превращению

$$NO_2 + O = NO + O_2 (R3)$$

 $NO_2 + OH = HNO_3 (R4)$
 $NO_2 + HO_2 = HO_2NO_2 (R5)$
 $NO_2 + NO = N_2O_3 (R6)$
 $NO_2 = (hv) NO + O (R7)$
 $NO_2 + NO_3 = N_2O_5 (R8)$
 $NO_2 + O = NO_3 (R9).$

Вновь образовавшиеся соединения азота начинают третью цепочку превращений, замыкая цикл превращений азотсодержащих веществ.

Трансформация NO:

$$NO + OH = HNO_2$$
 (R10)

$$NO + HO_{2} = NO_{2} + HO (R11)$$
$$2NO + O_{2} = 2NO (R12)$$
$$NO + O_{3} = NO_{2} + O_{2} (R13)$$
$$NO + NO_{3} = 2NO_{2} (R14)$$
$$NO + O = NO_{2} (R15).$$

Трансформация N₂O₃:

$$N_2O_3 = No + NO_2 (R16)$$

 $N_2O_3 + H_2O = 2HNO_2 (R17)$

Трансформация N₂O₅:

$$N_2O_5 = NO_2 + NO_3 (R18)$$

 $N_2O_5 + H_2O = 2HNO_3 (R19)$
 $N_2O_5 + O_2 = 2NO_3 + O (R20)$

Трансформация HNO₂:

$$HNO_2 + OH = H_2O + NO_2 (R21)$$
$$HNO_2 = (hv) HO + NO (R22)$$

Трансформация HO₂NO₂:

 $HO_2NO_2 + HO = H_2O + NO_2 + O_2 (R23)$ $HO_2NO_2 = HO_2 + NO_2 (R24)$ $HO_2NO_2 = (hv) HO_2 + NO_2 (R25).$

Трансформация NO₃:

$$NO_{3} = (hv) NO_{2} + O (R26)$$
$$NO_{3} + O = NO_{2} = O_{2} (R27)$$
$$NO_{3} + OH = NO_{2} = HO_{2} (R28)$$
$$NO_{3} + HO_{2} = HNO_{3} + O_{2} (R29)$$
$$NO_{3} + HO_{2} = HO + NO_{2} + O_{2} (R30).$$

Таким образом, цикл азота включает в себя 30 реакций. Кроме того, в расчетную схему должны быть включены реакции, описывающие эволюцию основных компонентов атмосферы OH, HO₂, H₂O, H₂O₂, O₃, O, H и H₂, включая возбуждённые состояния молекул (в первую очередь это касается молекул O и O₂).

Реакции отбираются по справочным таблицам IUPAC по атмосферной химии. Из приведённых в справочных таблицах фотохимических реакций отбрасываются те, которые идут при длине волны λ<290 нм.

Структура сервиса «Химическая авария»

Модуль по расчёту рисков химических аварий должен включать в себя следующие структурные блоки (части):

- Блок расчёта пространственно-временного распределения полей концентрации поллютантов. В первую очередь, для экспресс-оценок аварийной ситуации реализуется гауссова модель переноса в атмосфере.
- 2. Блок выбора модели химической трансформации для конкретного выброшенного в атмосферу вещества.
- 3. Блок расчёта концентраций первичного и вторичных поллютантов на основе уравнений химической кинетики.
- 4. Блоки расчёта вероятности поражения людей данным токсическим веществом при заданном времени воздействия.

Для обслуживания сервиса необходимы базы данных по моделям химической трансформации, кинетическим данным атмосферных реакций и токсическим свойствам веществ.

Список литературы

- 1. Химия окружающей среды./Под ред. Дж. О. М. Бокриса. М.: Химия, 1982. 671 с.
- 2. Израэль Ю. А. Экология и контроль состояния природной среды. М.: Гидрометеоиздат, 1984. 560 с.
- 3. Берлянд М. Е. Прогноз и регулирование загрязнения атмосферы. Л.: Гидрометеоиздат, 1985. 272 с.
- 4. Брасье Г., Соломон С. Аэрономия средней атмосферы. Л.: Гидрометеоиздат, 1987. 413 с.
- 5. Керр Дж. А. Экспертные оценки кинетических данных для применения в исследованиях по атмосферному моделированию.// Успехи химии, 1990, т.59, вып. 10, С. 1627.
- 6. Руководство по организации контроля состояния природной среды в районе расположения АЭС/ Под ред. К.П. Махонько. Л.: Гидрометеоиз-дат. 1990. 264 с.
- 7. Методика оценки последствий химических аварий (Методика "ТОКСИ". Вторая редакция). М.: НТЦ "Промышленная безопасность", 1999, 83с
- Горский В.Г., Моткин Г.А., Петрунин В.А., Терещенко Г.Ф., Шаталов А.А., Швецова-Шиловская Т.Н. Научно-методические аспекты анализа аварийного риска. М. Экономика и информатика. 2002. 260 с.
- 9. Количественная оценка риска химических аварий./Под. ред. В.М. Колодкина., Ижевск, 2001, 228 с.
- 10. Пененко В.В. Скубневская Г. И. Математическое моделирование в задачах химии атмосферы // Успехи химии, 1990, т 59, вып. 11, с. 1757